Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 33, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38175234

RESUMO

Due to the limited resources and environmental problems associated with fossil fuels, there is a growing interest in utilizing renewable resources for the production of biofuels through microbial fermentation. Isobutanol is a promising biofuel that could potentially replace gasoline. However, its production efficiency is currently limited by the use of naturally isolated microorganisms. These naturally isolated microorganisms often encounter problems such as a limited range of substrates, low tolerance to solvents or inhibitors, feedback inhibition, and an imbalanced redox state. This makes it difficult to improve their production efficiency through traditional process optimization methods. Fortunately, recent advancements in genetic engineering technologies have made it possible to enhance microbial hosts for the increased production of isobutanol from renewable resources. This review provides a summary of the strategies and synthetic biology approaches that have been employed in the past few years to improve naturally isolated or non-natural microbial hosts for the enhanced production of isobutanol by utilizing different renewable resources. Furthermore, it also discusses the challenges that are faced by engineered microbial hosts and presents future perspectives to enhancing isobutanol production. KEY POINTS: • Promising potential of isobutanol to replace gasoline • Engineering of native and non-native microbial host for isobutanol production • Challenges and opportunities for enhanced isobutanol production.


Assuntos
Biocombustíveis , Gasolina , Butanóis , Clonagem Molecular
2.
Microb Cell Fact ; 19(1): 79, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32220254

RESUMO

BACKGROUND: Owing to the increase in energy consumption, fossil fuel resources are gradually depleting which has led to the growing environmental concerns; therefore, scientists are being urged to produce sustainable and ecofriendly fuels. Thus, there is a growing interest in the generation of biofuels from renewable energy resources using microbial fermentation. MAIN TEXT: Butanol is a promising biofuel that can substitute for gasoline; unfortunately, natural microorganisms pose challenges for the economical production of 1-butanol at an industrial scale. The availability of genetic and molecular tools to engineer existing native pathways or create synthetic pathways have made non-native hosts a good choice for the production of 1-butanol from renewable resources. Non-native hosts have several distinct advantages, including using of cost-efficient feedstock, solvent tolerant and reduction of contamination risk. Therefore, engineering non-native hosts to produce biofuels is a promising approach towards achieving sustainability. This paper reviews the currently employed strategies and synthetic biology approaches used to produce 1-butanol in non-native hosts over the past few years. In addition, current challenges faced in using non-native hosts and the possible solutions that can help improve 1-butanol production are also discussed. CONCLUSION: Non-native organisms have the potential to realize commercial production of 1- butanol from renewable resources. Future research should focus on substrate utilization, cofactor imbalance, and promoter selection to boost 1-butanol production in non-native hosts. Moreover, the application of robust genetic engineering approaches is required for metabolic engineering of microorganisms to make them industrially feasible for 1-butanol production.


Assuntos
1-Butanol/metabolismo , Engenharia Genética/métodos
3.
Microb Biotechnol ; 12(6): 1476-1486, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31578818

RESUMO

Synthetic promoters are considered ideal candidates in driving robust gene expression. Most of the available synthetic promoters are minimal promoters, for which the upstream sequence of the 5' end of the core region is usually excluded. Although the upstream sequence has been shown to mediate transcription of natural promoters, its impact on synthetic promoters has not been widely studied. Here, a library of chromosomal DNA fragments is randomly fused with the 5' end of the J23119 synthetic promoter, and the transcriptional performance of the promoter is evaluated through ß-galactosidase assay, fluorescence intensity and chemical biosynthesis. Results show that changes in the upstream sequence can induce significant variation in the promoter strength of up to 5.8-fold. The effect is independent of the length of the insertions and the number of potential transcription factor binding sites. Several DNA fragments that are able to enhance the transcription of both the natural and the synthetic promoters are identified. This study indicates that the synthetic minimal promoters are susceptible to the surrounding sequence context. Therefore, the upstream sequence should be treated as an indispensable component in the design and application of synthetic promoters, or as an independent genetic part for the fine-tuning of gene expression.


Assuntos
Elementos Facilitadores Genéticos , Expressão Gênica , Genética Microbiana/métodos , Engenharia Metabólica/métodos , Regiões Promotoras Genéticas , Fusão Gênica Artificial , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Reporter , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...